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An extension of Marsden’s identity for periodic trigonometric splines is obtained
by a bivariate approach to that space. A basis of these spaces, whose elements have
minimal or quasi-minimal support, is studied. 1 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper we consider a partition of the plane by rays starting at the
same point. We work with the space of splines formed by C*~! functions
which are homogeneous polynomials of degree less than or equal to k& at
each angular region. W. Dahmen [3] and W. Dahmen and C. A. Micchelli
[4] gave a definition of multivariate truncated power. In this paper, we
generalize this definition in the bivariate case, in the sense that the support
of our basic functions need not be a convex region of the plane. This will
also imply the loss of some properties of truncated powers. For instance,
they are not necessarily positive.

We also obtain a local basis. The support of the basic functions contains
a very reduced number of angular regions, which brings advantages in
order to solve interpolation and least squares problems in this space, since
the associated matrices have many zeros. The problem of obtaining a local
basis whose functions have a reduced support in multivariate spaces of
splines is far from being solved, except in the case where we reduce the
smoothness of the splines (see, for example, [1]). In our case, the basic
functions have minimal or quasi-minimal support (see 3.3 of [2]). This
situation is very interesting in the frame of general multivariate spline
spaces.

Finally, we obtain a Marsden type identity (cf. [6, 8]). These identities
for multivariate spaces are very useful, for example, in quasi-interpolation
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schemes, but to obtain them is difficult in multivariate spaces, as indicated
on page 113 of [2]. Let us also remark that the space of bivariate
homogeneous splines on radial partitions can be interpreted as the space of
univariate periodic trigonometric splines. In fact, if f is a bivariate
homogeneous spline, then the function ¢(w) := f(cos w, sin ) is a periodic
trigonometric spline in [0,2n]. Conversely, from each periodic
trigonometric spline ¢ of order £+ 1 in [0, 2] we may obtain a bivariate
homogeneous spline taking w e [0, 2n), the unique value such that

x , y
COS W = —jm——=,  SiN 0 = —=—s,
Vx4 y? Jx+y?

and then defining f(x, y) := (/x> + »*)* ¢(w).

In [5], a Marsden type identity was obtained for the space of (non-
periodic) univariate trigonometric splines.

In Section 2 we introduce basic notations and preliminary results,
obtaining the dimension of the space. Larry Schumaker studied the dimen-
sions of these and other spaces (see [7]). In fact, most of the results of
Section 2 are well known but we introduce the basic tools and notations
which will be used in the sequel. In Section 3 we study the special case (i.e.,
the rays are contained in a number of lines less than or equal to £+ 1) and
we find a basis with locally linearly independent splines having minimal or
quasi-minimal support (Theorem 3.1). In Section 4, the general case (more
than k + 1 lines) is studied. The minimally or quasi-minimally supported
functions are characterized (Theorem 4.3). We also describe a basis with
locally linearly independent splines having minimal or quasi-minimal
support (Theorem 4.4). Finally, a Marsden type identity is obtained
(Theorem 4.6).

2. Basic NOTATIONS AND PRELIMINARY RESULTS

Let us consider the vector space R% A cone of R? is a non-empty set
C <R’ such that if ue C and 1> 0, then rue C. Remark that the set {0} is
always a cone. We shall say that a cone is proper if it contains a non-zero
vector.

An angular region of R? is a proper cone of R? which is also a connected
set. A ray is a minimal angular region, in the sense that it contains no
angular region except r itself. An angular region, which is not a ray is said
to be a proper angular region.

Each ray r of R? intersects the unit circle S= {(x, y)e R*|x*+ y*=1}
only at one point r N S = (cos w, sin w). Conversely, each point of the unit
circle (cos w, sin w) defines a unique ray of R?, r= {(t cos w, 1 sin w)[1>0}.

640,75/3-2
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FIGURE 2.1

Let us define the following relationship between rays. A ray r, lies
between ry and r, (see Fig. 2.1), r,<r, <r,, if the triangle whose vertices
are roNS=(cos wy,sinw,), r,nS=(cosw,,sinw,), and r,nS=
(cos w,, sin w,) is positively oriented, that is,

1 1 1
COsS W, COS®W,; COSw,|>0.
sinw, Ssinw, Ssino,

The previous definition allows us to define a closed ray interval
[ro, r]={retuf{rlro<r<ri}ou{r}

Analogously, one can define another kind of intervals. A ray-interval can
also be seen as a set of points, and thus, it defines an angular region.
For a given ray r, we can also define its opposite ray,

—ri={(-x, =¥)(x, y)er}.

We shall also say that a set of rays is in general position if it contains no
pair of opposite rays.

Let us consider next a partition of R? in angular regions induced by an
ordered set of different rays (see Fig. 2.2), ro<r, <r, < --- <r,.

P My

FIGURE 2.2
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We shall use a cyclic notation by setting r, ., =rg, s ¥y k. =Fx_1, ... and
F =V, el _g=r,.1_x--. Associated to each ray r;, we have an angular
value w, such that (cos w,, sin w;)er.

Let 17,(R?) be the vector space of all the bivariate polynomial functions
of degree less than or equal to k. Let us define

Si(For o Fa) = {S€C* R f1(r.. 1€ M(R), i=0, 1, .,n} (2.1)

as the vector space of all bivariate splines generated by this partition and
let H/(ry, ..., r,) be the subspace of homogeneous functions in S;(rg, ..., 1,,),

H(ros s 1) = { f€ Silro, ., ) ftx, ty) =t*f(x, ), t20}. (22)

DeFNITION 2.1. A function fe S (ry,...r,) is said to be globally
supported if suppf=R?. The functions of S,(rq,..,r,) which are not
globally supported are said to be locally supported.

Let us introduce the following space consisting of locally supported
functions

Lk(rO) seey rn)= {fESk(rO, eeey r,,)isuppf & [r()’ rn)}' (23)

Given an element feH,(ry,r,,...r,), we can denote by P, the
homogeneous polynomial which agrees with fin [r,r;, ], j=0,...n It

can be easily seen that the polynomials P; satisfy

i
Pi(x, y)=P,x, y)+ ) dfcosw,y—sinw,x)*, j=0,1,.,n (24)

i=0

From (2.4) we deduce that the polynomials P; differ in a homogeneous
polynomial. Using this fact, we can deduce the relationships

Li(roy s 1) S Hi(ros ooos 1) € Siros oo 1), (2.59)
Si(Fos e Fa) = Hy(rg, ooy 1)) ® M ((R?), (2.6)
Si(Fos s 1) = Li(rg, oy 1) ® T (R?), (2.7)
H(Fos o ¥a) = Li(ro, ..., 1,)® ITHR?), (2.8)

where IT%(R?) denotes the vector space of homogeneous polynomials of
degree k.

That means that analyzing the structure of one of these spaces
(dimension, a choice of a basis, etc.) gives information on the structure
of the other spaces. We shall study mainly the space of homogeneous
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splines H,(rg, ... r,,), which is equivalent to the space of one-dimensional
trigonometric periodic splines.
From (2.4), taking j=n we also obtain

Y d(cos w,y—sin w, x)* =0, (2.9)

i=0

where expanding the powers and considering the coefficients of x/y* /, we
obtain

Y cos* o sinfw,d,=0, j=0,1,. Kk (2.10)
i=0

which can be expressed in matrix form as

d 0
Ak(w()awl’"" wn) :l = : ) (211)
d,] \o

where A4,(w,, w,, ..., w,) is the (kK + 1) x (n+ 1) matrix given by

Awg, Wiy .y @)

cos* w, cos* w, cos* w,
cos* ' wysinw, cos* 'w,;sinw, .- cos* 'w,sinow,
sin* @, sin® w, o sin* w,

Thus, each element of H,(rg, r,, .., r,) can be defined by a homogeneous
polynomial of degree & and a vector of constants 4 such that
A(wy, @y, ..., w,) d=0. Therefore, we obtain the formula

dim H(rg, r\s . ry) =k + 1 +nullity 4,(wy, @, ..., w,)

=n+k+2—rank A,(wy, 0, .., o,). (2.13)

By (2.8) we have dim H,(r,,r,, .., 7r,)=k+14+dim L. (r,, ry, ..., r,) and
therefore

dim L,(rq, ry, ... r,)=n+1—rank A (wg, @4, ..., w,). (2.14)

We next analyze rank 4,(w,, w,, .., w,) in order to give an expression
for the dimension.
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PROPOSITION 2.2. det Ay(wo, @y, .. @) =TI} ,_q > sin(w,— ).
Proof. If cosw;+#0 for all i=0, .., k
k .
det A (wg, @y, .y i) =[] cos* w,-det(tan’ ®,), ;o _x. (2.15)
=0

A:»

det(tan’ w,); ;_o .+ = (tan @, — tan w,) (2.16)

)
i

i j
7

Now substitution of (2.16) in (2.15) provides the desired result. For the
rest of the cases we can extend the formula by an argument of continuity,
taking into account the fact that both sides of the formula are continuous
functions of w,, .., w,. §

The above proposition can be used, in the first place, to determine the
rank of the matrix A, (wy, Wy, ..., W,).

DerFINITION 2.3. We define the rank of a set of rays rank(ry, 7|, .., r,)
as the minimal number of lines which contain all the rays, that is, the
maximal number of rays among them which are in general position.

Remark that the number of pairs of opposite rays is m=n+1—
rank(rq, 7, .., r,)

ProposiTION 2.4. (1) If rank(re, ry, .. r,) <k +1, then

dim H,(rq, ry, . r,)=n+ 1+ (k+ 1 —rank(ro, ry, .., 1)), (2.17)
dim L,(rq, ¥y, ry)=n+ 1 —rank(rg, ry, .., 1) (2.18)

(2) If rank(rg, ry, . r,)=k+1, then
dim H,(rg, rys o ry)=n+1, (2.19)
dim L (ro, ry, ., r,)=n—k. (2.20)

Proof. We can use Proposition 2.2 in order to find regular submatrices
of A (wg, vy, ..., w,) showing that

rank A4,(w,, 0, ..., w,)=min(k + 1, rank{(ry, ry, .., 7))

Now we can compute the dimensions using (2.13) and (2.14). |
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COROLLARY 2.5. The vector space L, (ro,r,..,r,)=0 if and only if
Fos F'is - I'y are in general position and n <k,

Proof. It is a consequence of imposing dim L.(rg, r,,..,r,)=0 in
Proposition 2.4. |}

We try now to describe basic elements in H.(rgy, r;, .., r,) with small
support. These basic elements, called multivariate truncated powers, were
introduced by Dahmen [3]. Our approach generalizes the approach of
Dahmen and Micchelli [4] in the bivariate case, since we also consider
functions supported on non-convex angular regions. We use in the
following more suggestive univariate terminology and call the basic
elements simply B-splines. Let us consider now the case of &+ 2 rays in
general position. We know by (2.20) that

dim L (rg, Fiy e Fiy) =L (2.21)

A conveniently normalized function B(x, y|ry, ry, .., rr 4 ) of this space is
called a B-spline. The rays rq, ry, ..., i, are said to be the defining rays of
the B-spline.

The restriction of this function to each angular region [r;,r;, ] is a
polynomial (see Fig. 2.3) of the form

J
Pix, p)=3 d/(cosw,y—sinw,x), (2.22)
i=0

where d=(d,));_o 1 . x+1€R*" ' is a solution of

Ap(wy, @y, s g 1) d=0. (2.23)

A solution of the linear system (2.23) is given by

di=(—=1)det A (g, @y, 0 Oy _ 1, Oy, 1y s Oy Dy 4 1)
) k+1

=(=1) ] sin(w,-) (2.24)
j =0
N WEY]

0
FIGURE 2.3
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This choice produces our normalized B-spline with respect to the rays

Fos Fis e Pig -

k k+1
B(x,_Viro,r,,...,rk,rku)::Z(-1)'( Il sin(co,—w,))

i=0 i 1=0
JudEinj>1

: k
X (cos w; y —sin W, X)[, . 1 (2.25)
where (cos w; y —sin w, x)’E,P .1 1s the corresponding truncated power

(cosw; y—sinw,; x)* if (x, p)elr,r/]
7 J J

M k
cos w; y—sin w; x) = .
( ;) s {0 otherwise.

By the definition of B(:|rq, r(, - Fx, x4 ), We know that

supp B(-1ro. iy s Ty Tiw 1) = Lros 71 35

because if supp B(-|rg, F1s ooy Tes i 1) < [Fos T 4 1 1, there would be locally
supported functions based on less than k+2 rays in general position,
which is impossible by Coroliary 2.5.

Let us consider now the case of two opposite rays r, and —ry;. We know
by (2.18) that dim L,(ry, —r)= 1. A non-zero function in this space is

(cos oy — sin wox)¥, = (€os oy —sin @o X)f,. 015 (2.26)

whose support is the halfplane [ry, —7,]. Both rays r, and —r, are called
the defining rays of this function.

We shall use functions (2.25) and (2.26) in order to construct the basic
clements. We wish a property stronger than linear independence to be
satisfied:

DEfFINITION 2.6. We say that the non-zero functions fi, f5, ... f,€
H(ry, ry, ..., r,) are locally linearly independent, if for each angular region
[risriv 1], i=0,1,.., n, the set of non-zero restrictions f;|;, .. for the
indices j such that supp f;=[r,, r;,,] is linearly independent.

Remark. We observe that local linear independence implies linear inde-
pendence. Let f1, f5, ..., f,€ H(rg, 1y, ..., r,) be locally linearly independent
functions such that 3°7_, ¢, f;=0. Since the f;#0, there exists an angular
region [r;, r,, ] such that supp ;= [r;, r,, ] and thus considering the
restriction to [r;, r;,,] we conclude that ¢,=0 for each j.

DeriNITION 2.7. A non-zero function fe H,(ry, 1y, .., r,) is said to be
minimally supporied if for each non-zero ge H,(ry, ry, ..., T,)

supp g < supp /= supp g = supp /.
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FIGURE 2.4

It would be very interesting if minimally supported functions generated the
whole space H,(rg, 7y, .., F,). But unfortunately this is not true in general,
as shown in the following example.

ExaMPLE 2.8. Let us consider the ordered set of rays
ro<r,<r,<rs,

where ry= —r,, and the associated partition of the plane (See Fig. 2.4).

Let us analyze the structure of the space of homogeneous continuous
piecewise linear functions H,(rq,r,,7,,r;). A function is minimally
supported if and only if the support is one of the following angular
regions: [ro,r>], [ri,»r3), [rs.re]. It can be readily seen that the
minimally supported functions generate a subspace of dimension 3 while
dim H(rg,ry, ra, r3)=4.

Let M (ry, ry, .., r,) be the subspace of H,(r,, r,, ..., r,)} spanned by the
minimally supported functions. If M, (rq, ry, ... 7,) = Hi(rg, 75 ., ), then
there exists a basis of minimalily supported functions.

DEerINITION 2.9. A function fe H (rg, rqy ooy Th) \M (70, 715 oo, 1) 18 said
to have quasi-minimal support if for each ge H,(r, ry, .., r,) such that
supp g <supp f then ge M, (ry, ry, ... 1)

The concept of quasi-minimally supported functions is very useful for the
definition of basis in multivariate spline spaces (see [2]).

3. A Basis IN THE SPECIAL CASE

In this section we deal with the special case of rank(rgy, 7y, .., r,) <k + 1.
The number of pairs of opposite rays among {rg,ry,..r,} is
m=n+1-—rank(ry, r, .., r,). We can find indices

Oa(l)<a(2)< -+« <a(m)<n
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such that there exists a'(i} with O<a(iy<a'(i)<n, ryy= —ry, for
i=1,..,m
Let us consider the set of functions
: k
(cos w iy y —sin w,;,x)", , a1

- k .
(oS W,y ¥ —SIN W, 1,X)5, i=1,.,m

We shall show that they are linearly independent and then they form a
basis of the space L,(rq,r(,..,r,). Let us observe that each pair of
functions of (3.1) add up to the homogeneous polynomials

(COS W,y — SIN W, X). (3.2)

In order to obtain a basis of H,(ry, ry, ..., r,,), we shall use the functions
of (3.1) and also functions of the form

(cos @,y —sinw,; x), j=1,.,k+1—m, (3.3)
where @, are angular values associated to rays 7, such that
1ank { 7,0 oo, Fogmys Fis oo Fas1 - m) =K+ 1.

Using Proposition 2.2 it is straightforward to see that the functions of (3.2)
and (3.3) form a basis of IT{(R?).

THEOREM 3.1. If m=0 then H(ry,r,, .., r,) = IT}(R?), a basis is given
by the functions of (3.3), and these functions are minimally supported. If
m> 0 the following properties hold.

(1) The 2m functions of (3.1) are minimally supported and they form
a basis of M (rg, rys ..., ¥,)-

(2) IffeHyro, 7y, .. r,) and supp f# R? then fe M (ro, i, ... F)).

(3) A basis B of H(rg, 1y, ..., r,) is given by the 2m locally supported
Sunctions of (3.1) (minimally supported) and the k + | — m globally supported
Sunctions of (3.3) (quasi-minimally supported). Moreover the functions of this
basis are locally linearly independent.

Proof. The case m=0 foliows from (2.8) and Coroliary 2.5. In the
following, we study the case m # 0.

First we show that the functions in # are locally linearly independent.
Let us consider any angular region [r,, 7, ,], i=0, .., n. The restrictions of
the functions in # to this angular region are either 0 or some of the given
polynomials of (3.2) and (3.3), which are linearly independent. Then by
(2.17) the functions in & form a basis of H,(rq, 7\, ..., ).
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By (2.18) the functions of (3.1) are of minimal support. Let f be a locally
supported function; that is, the restriction of f to some angular region
[ri, rii 1] is zero. Then f'is a linear combination of the functions in # and,
by the local linear independence of the basic functions, the coefficients
corresponding to the functions whose support contains [7;, r;, ,] are zero.
Therefore f'is a linear combinaton of the functions of (3.1) and property (2)
holds. Furthermore, the minimally supported functions are locally
supported and then are generated by the functions of (3.1). So, property (1)
is confirmed.

Finally the functions of (3.3) are quasi-minimally supported because they
are not in M ,{ry, r{, .., r,) and any function with strictly smaller support,
ie., locally supported, is by property (2) in M,(rq, 7y, ... ). 1

Remark. As a consequence of the previous theorem we obtain that it is
possible to find a basis consisting only of minimally supported functions
(that is, M (rg,rys..,r,)=Hry, ry,..,r,)) if and only if m=0 or
m=k+ 1. If m=0 every function is a homogeneous polynomial and so
globally ( and minimally) supported whereas if m=4k+ 1 the basis #
consists of locally (and minimally) supported functions.

Let us observe that the construction of & only uses the pairs of opposite
rays among r,, ..., r,. Therefore, the rest of the rays are not relevant for the
structure of the space H,(rg, ry, ... ')

COROLLARY 3.2. The set of minimally supported functions
. k .
(cOS W,y ¥y —sin wyy )7, i=1,..,m

is a basis of the vector space L (ro, Fy, ..., 7'y)-

Proof. The functions are in fact in L,(rg, ry, .., r,) and are minimally
supported by Theorem 3.1(1). They are also locally linearly independent by
Theorem 3.1(3) and, by (2.18), they form a basis. §

4. A LocaL Basis AND A MARSDEN TYPE IDENTITY IN THE GENERAL CASE

In this section, we deal with the general case of rank(ry,r,, ... r,)=
k + 2. In order to give a characterization of minimally or quasi-minimally
supported functions we introduce the following definitions:

DermnitioN 4.1. Let f'e H (ry, 1y, .., 1) With supp f=[r;, r,] be a non-
zero locally supported function, that is supp f # R? The function f is said
to be left minimally supported if, for each ge H, (ry,ry,..,r,) with
suppg=1[r.,r;], we have [r,r ] (r,r].
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Analogously, the function f is said to be right minimally supported if, for
each ge Hy(rg, 1\, ..., r,) with supp g = [r;, r,], we have [r,,r,J< [r;, 1]

From the definition, it follows that each minimally supported function is
left and right minimally supported. As we shall see, this is also true for
quasi-minimally supported functions.

In order to obtain left minimally supported functions we make the
following construction.

Let us observe that

) =rank(r,)<rank(r;, r,, ()< - <rank(r;, ri s s 7iin)

Since rank(r;, r;, |, ... r;,,) =k + 2 and at each step only one ray is added,
there exist rays rg,, with

i=Bo()<Pili)< - <Buli)< B 1) <i+n
such that
rank{r;, riy 0y o Py 1) =,
rank(r;, riy 1y o Fiy-1> Fgin) =J+ L.
Let us remark that, by definition, ry ; is not opposite‘to any ray among
r<ri g <-- <’"11,u)vl

and therefore, r,, rg s ..r P4, , i) T€ In general position.
Let us define for each index 7, d(/) to be the unique index /< d(i) <

Bi (i) given by

5(i) = {i’ if there exists i’ with i<i' <i+k+1,r; = —r,, @1)

B (i) otherwise.

We prove in Theorem 4.3 that [r,, rs,, ] are just the left minimal supports.
The next proposition will be used to prove that the left minimal supports
and right minimal supports coincide.

PROPOSITION 4.2, The mapping

A:{rg iy o Fnd = {Fos Fis e T}
P Py
with (i) defined by (4.1), is bijective.
Proof. We know that

l =rank(r,) <rank(r,,r,_)< - <rank(r,r,_ |, s F; )
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Since rank(r;, r, |, .., r,_,) 2k +2 and at each step only one ray is added,
then there exists an index ¢ with /> i> /- n such that

rank(r,, r; (., i )=k+1,

rank(r,, 7, 4, Fip 1 r)=k+2.

From the definition of i, we know that r; is not the opposite ray of any of
the rays r;>r, (> --- >r;, ,and thus 8(i{) = B, , ,(/). We know that rg__
is the first ray such that

rank(r, 1 oo Tac - 1 P i) =K+ 2,

which implies that f, , (i) <1

If 8., ,(i1)={, then we obtain the desired result: §(i)=1.

If B,,,(i)</, then r, must be opposite to one ray r, among
Fig1 <tiy2<---<r; ,, which means that the rays r,. <r, < --- <r,_,
are in general position and

rank(r;, Py iy By ) S<tank(r; (o Fiypan e o Sk + 1

That is, I<!"+k+ 1 and r, = —r,, which implies that §(/') =/ Hence, we
have proved that A is surjective and then bijective. |

In the following, we denote by & '(/) the unique index 7, such that
I—n<i<l 6(i)=1

THEOREM 4.3. Let fe H,(ry, 1y, ... t,) and 6(i) be the index defined by
(4.1). Then the following statements are equivalent:

(1) supp f=1L[r;, rs] for some i,

(2) [is left minimally supported,

(3) [ is right minimally supported,

(4) [ is minimally or quasi-minimally supported.
Moreover, f is minimally supported (resp. quasi-minimally supported) if and
only if 0(I)y<i+k+1 (resp. 8(i)=i+k+2).

Proof. (1)=(2),(3),(4). If 8(i)<i+k+1 (that is, either &(i)=1i’
with r.= —r, or 8(i)=p, ., (i)=i+k+1) by (2.18) or (2.20) we have
dim L, (r;, 7y, - rsy) =1, which implies that the functions supported
on {r;,rs;] are minimally supported and so, left and right minimally
supported.

If 8(i) =i+ k + 2 then, by (4.1), 8(i}= B, (i) and

rank(r, ¥,y s oo Yo -0 P ) =K+ 2,
rank(r,, r,, s e Fg 1) =rank(r,, , .., it — 15 T itn)

=k+1
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and
rank(r,, 1, ., P, 1) =K.

By (2.20), we obtain dim L,(r,,r;,,, ... rs;)=2 and by (2.18) we can
compute the dimensions of the local spaces and obtain

Li(risriyvyson Foin- 1 )V =Li(riy 1y Toy o 1)

=Li(riyys o st 15 Tan b (4.2)

which implies that the functions supported on [r,, rs; ], are left and right
minimally supported and that L.(r;,,.., rs;_ ) 1S a non-zero vector
space properly contained in L,(r,, .., rs;). We know by Corollary 3.2 that
Li(ri¢ 5. rsiy_) is generated by a minimally supported basis and by
(4.2), this space contains all the elements whose support is properly
contained in [r;, rs; ). In other words L. (r,,, .., rs;_,) is the space
generated by the minimally supported functions in L,(r,, ..., r5,,) and thus,
each function supported on [r,, rs;, ] is quasi-minimally supported.

(4)=(2), (3). As we have pointed out, minimal support implies both
left and right minimal support.

Now, let f be a quasi-minimally supported function with supp f=
[r,, r;]). Let g be a function with suppg=[r,,r,]. If [r,,r,J<= [r,, r,], then
geM(ry,r\, .., r,). We also know that there exists a real constant 1e R
such that

(f-tg”[r,,r,ﬂ]:()

and thus supp(f —1g)< [r,, ., r,/], which implies that fe M, (r,, ry(, .., 1),
contradicting the quasi-minimality. Thus [, »,]2{r,, r,], which means
that f is left minimally supported.

Analogously, it can be seen that f is right minimally supported.

(2)=1(1). Let [r;,r,] be a left minimal support. We showed in
the first part of the proof that [r,, rs.,] is also a left minimal support. We
conclude that /= 6(i).

(3)=(1). Let [r;, r,] be a right minimal support. Since [r; 1, r,] is
also a left minimal support, i=46 "'({). |

Let us consider ro<r, < --- <r, and the problem of finding a basis of

locally supported functions with minimal or quasi-minimal support. As we
have seen, we have two different cases:

(1) f[r.rss] is a halfplane, that is, rs,,= —r;,, or equivalently
0(i) < B (i),
(2) otherwise rs;, # —r,, that is, (/) = B, , (7).
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For each ray r;, we define left minimally supported function B; with
supp B,=[r;, rs;,] based on the functions defined in (2.25) and (2.26).

(cos w; y —sin v, x)* it o(i) < Biyq(i)
B.(x, y):=< B(x, V1T gstiys ¥ aiiiys = Toa s () (4.3)

i 8(i) = Br. ().
k+1 N K+t
he s a SiN(@g ) — @gi)

Let us observe that the factor (511, ., sin(w, ) —®g)) " intro-
duced in the basic function B(x, ¥|rs,:)» 7,01+ = Py, ry) Das been chosen in

order to have

Bil.,, 1= (cos w,y—sin w,x)~, i=0,1,..,n (4.4)

We introduce a formula based on the definition (4.3) which may be
derived analogously to (2.4) but rotating clockwise:
3(i)
Bi(x, y)= 3, dycoswuy —sinw,x),  V(x, y)elr,_,,r] (45)

h=j

Let us remark that dy;, #0 and d, =0 if r, is not a defining ray.

THEOREM 4.4. The locally supported functions B,, i=0, 1, .., n, of (4.3)
are locally linearly independent and they form a basis B of H (rq, 1y, ..y 1)
Moreover, these functions are minimally (if S(i)<i+k+1) or quasi-
minimally (if 6(i) =i+ k + 2) supported.

Proof. By (2.19) and Theorem 4.3, it is sufficient to show that the

functions in # are locally linearly independent.
In first place, we shall prove that

Bsvpims =01,k (4.6)

are the unique functions in # such that [r, |, r;] is contained in their
support.
If r5-1.4,, 1S NOt opposite to ry ), then B,(j)= B, , {8 "'(B,(j))) and so

k+2=rank(rs-i1g0s Fo- g+ 1o oo Fppn) Z1a0K(E 15 70 s Payp),

which implies that § ~'(,(j))<j—1.

 r; 2p,y is Opposite to ry, ), then by definition of $,( /), no ray among
Fitis - Py is opposite to rg, ;) and then & ~'(8,(j)) <.

We conclude in any case that

Tis

supp Bz = [rs-wpins renld 20 11 [=0,., k (47)
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Now let B, be such that supp B,,2[r,_,,r;]and so, m< j—1<d(m). We
shall see that &(m)= B,(j), for some /e {0, 1,..,k}, and then B, is
included among the functions of (4.6). Since m+ 1 < j<d(m), [r;, rspml S
[7m+ 1> Tsom]- By Theorem 4.3, [r,,, s, ] is a right minimal support and

so, dim Ly(r;, ;. {» - T'somy) = 0. By Corollary 2.5, r;, 7,1, .., P4 are in
general position and d(m)— j<k, and then
Bf=j+q,  q=0,1,.,8(m)—j (4.8)

Taking /= d(m)— j we obtain é(m)= 8,(j)-
On the other hand, we can use formula (4.5) and, rewriting the sub-
indices as indicated by formula (4.8), we obtain for each /€ {0, 1, ..., k}

I
! y : k
Bs-ygiinkx, y)= Y, al(cos wg, )y —sin g X)
m=0

V(x, )’)‘5["_,’71,"/], (49)

where o} #0.
In consequence, if

k

Z 1, Bs-115,(x, y)=0 Vix, v)elr,_\.nl

/=0

!
/ : &
< 2. %,(Cos Wy, )y —sinwy,; X) >

(Z i )‘°°swﬂm(,v).v—sinwﬂm(,-]xv V(6 y)elr )

Since r;, rg,(jy - Tguy @€ in general position, we have, by Proposition 2.2,
det A (w;, wg;ys - Dp ;) # 0 and thus

k
Y 1al,=0, m=0, ..,k

and so, we may prove that ¢,, ¢, _,, .., t, and ¢, are equal to zero. So, the
local linear independence is proved. ||

COROLLARY 4.5. A basis for the local space L,(ry,r,, .., r,) is given by
the n—k functions
B, ¢ {07'0),3 " '(B.(0)), ... 3 '(BON], (4.10)

which are the functions in B whose support is contained in [ry, r,].
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Proaf. Let us observe that in the proof of Theorem 4.4 it was shown
that the functions Bs-14,0, {=0, 1, .., k, are the unique functions in #
whose support contains [r,, r,]. Taking j=0, we see that the functions
of (4.10) are in L,(ry, 7y, .., r,)- By Theorem 4.4, they are locally linearly
independent and by (2.20) they form a basis. ||

Finally, we may obtain a Marsden type identity:

THEOREM 4.6. For any w,

n k :

. iy Sin(wg iy —w
(Cosw~y—smw.x)"= Z n/:—l - ( 84U )
j=o Iy sin(@y,) — @)

B;(x, y).

Proof. Let f{x, y):=(cos w-y—sinw-x)*. By Theorem 44 we may
write

f=Y 4B, (4.11)

Let je {0, 1,.., n} be given. We want to find the coefficient 1,.
Let us take r;, rg,;y» - Fp, ;- As they are in general position, by Proposi-
tion 2.2, det A, (w;, wp, ;) ., Wp;) #0 and there exist ¢§”, ¢i, ..., ¢} such

that
k

S, 0= ¢i(cos wp, ;¥ —sin wy,;, x)k (4.12)
I=0
The ¢/’ is given by

PR

IT;_,sin(wg, ;) —w)
k : ‘
i=1 Sin(wg, ;) — )

) —
Co =

By (4.4), B,|(,,, .., =(cos w;y —sin w,x)* and then we obtain from (4.12)
k
S5 y)=c”B;+ 3, ¢ (c0s wp,;y y —sin wpy g, x)*
=1
Vix, p)elr,r] (4.13)
If we consider Bj 1p,;), - Bs-15, W€ can deduce from (4.7) that

[r;,rj,1] is contained in their support and analogously to (4.9) we can
derive the following formula for each /e {1, .., k}:

I
Bs-1gimlx y)= Z a,,(cos Wp, ) ¥ = SiN wg () x)t

m=1
Vix, y)elr,rils

where a/#0.
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: k
Ip consequence, we can €xpress (cos wg, ;¥ —sin ey, x)°, I=1, k, as
a linear combination of B;- s,y - Bs gy On [r;, r;4 ], which are
functions of # different from B;. Then by (4.13), we derive

f'[r..rM]:(Cg”Bj'{” Z tiBi>

i=0
i

[rior 1]

From the local linear independence of the B,’s (Theorem 4.4) and from the
fact that supp B;2[r,, r;, ], we obtain by (4.11) that 2,=c{". 1
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